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T H E  E V O L U T I O N  O F  H O M O G E N E O U S  T U R B U L E N C E  
I N  A D E N S I T Y - S T R A T I F I E D  M E D I U M .  
3. A N A L Y S I S  O F  T H E  N E A R  R E G I O N  

V. A. Babenko UDC 532.516 

Development o / a  turbulent perturbation in a homogeneous .flow moving within a medium that is linearly 
density-stratified across the direction o f / low motion is described. The initial region of the evolution o/ 
turbulence with a large turbulent Reynolds number R2 is considered. 

We consider the evolution of turbulence created by a turbulizing grid in a medium with a homogeneous 
velocity field in the presence of a constant transverse density gradient d#/dx2 - const induced by the field of the 
force of gravity. In the analysis, we use the theory of quasihomogeneous turbulence developed in [1, 2 ]. 

It has been shown in [2, 3 ] that the model employed describes the emergence and propagation of internal 
gravitational waves that change substantially the flow character and the decay rate of the kinetic energy of the 
turbulence. In [2], the system of equations from [1 ] has been solved numerically, and in [3, 4] an analytical 
investigation of the same system has been carried out by the method of the small parameter (e = FrZ), which was 
applicable everywhere except for, probably, a small initial portion at which the condition t = eTp << 1 is satisfied, 
where Tp is the time scale of the density field. The variable t has the meaning of time and is used in [3, 4 ] along 
with another time variable f '= Fr . r  for a two-scale expansion in terms of the inverse Fr number, which is the ratio 
of the buoyancy and inertial forces. In [4 ], the final stage of degeneracy of the turbulence energy is investigated 
when t -* 0% R2 --, 0, and e << 1. In what follows, we investigate another limiting case when R2 >> 1 e << 1. 

The system of equations from [2 ] to be solved can be written in dimensionless form as follows: 

d-------~=-2 d + - ~ ( 1 - c  0 3 - 1  + 3 + 3 Q - ~ - - F r 2  -~u' 

de [ r,, ] e 
d---~- - 2 1 + Q-~--Fr 2 "~u' 

- - d - ~ - = ( F ~ * - 2 ) - 2  1 - d  ~ cro~+ ~ Fr 2 ~ , 

dQdr = -  Fr2 [2  1 R 2 2  d ( R ~ z  ~)]  O - F r  2 O 

-- ( 1 -  d) + 1 0 - - ~ #  ) + 2d cr~ + R-oo ~ ,  

d r - - 2  1 - Q  -~p, 

(1) 
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4/ 3/ 
dTp = (F;2 _ 2) + F;]  Tp d 1 - 

where functions ~u ~ ~ ,  and ~ from i l l  depend on the turbulent Reynolds number  via the dimensionless 
parameter d(R~) = 1 - 2 / ' / 1  + 6u/R~  (the constant 6u is determined in II 1 as 6u " 2800), which characterizes 

the inertial character of turbulence (d ~ 0 (Ra >> ~ in the case of strong turbulence, and d -~ 1 (R~t --" 0) in the 
. 11 1 . ~ . . . , ~  = 2 + 4 d .  case of weak turbulence);/~u = ~- ~ a ;  l'~ol = ~-(1 - d); F~p~ 

The functions R**(a) and o**(o) entering into Eq. (1) are asymptotic values of the ratio of time scales R 

and the turbulent Prandtl  number at r --, oo in the case of passive stratification (Fr = 0) taken from [5 ]: 

o** = 3 ( 1 - ~  ~ 2o ) 3 / 2 ] - 1  , (2) 

R** ~ 1 -  ~ +03 /2  1 - 2  2o 1/2 = + (71 / 2 (3)  

In what follows, we consider within an approximation of weak stratification the initial region of turbulence 

evolution, which spans a range of approximately the three first periods of oscillations of the functions and takes 

place during the dimensionless time interval A(r~ = 10 (see [3 ]). The variable t -- eT a increases on this interval by 

about 0.3. This means that even if the condition t << 1 is satisfied in the initial point, the condition t - 1 charac- 

teristic for the far region [3 ] holds at the end of the mentioned portion, i.e., an interchange of the near  and far 

regions takes place. In order to obtain analytical solutions at the initial region we will addit ionally assume that the 

parameter d(R~) is small (strong turbulence). 
In order to simplify system of equations (1), we will use the same dimensionless variables as in [3, 4 ] but 

with a dissimilarity regarding the function q that describes the transverse mass flow. We will use t he  following 

notation: 

ql = e T p Q / E ,  t9 = t O ~ E ,  K = R 2 2 / E ,  R = Tu /Tp  , t = eTp,  f '=  e r ,  

where e = 1/2. The function K presents a portion of the energy of transverse pulsations in the kinetic energy of 

turbulence, the function R presents the ratio of time scales of the velocity field and the scalar field, and  the function 

t9 presents the ratio of the potential energy of scalar fluctuations in the field of the force of gravity tO  to the kinetic 
energy of turbulence E. In terms of the notation introduced, system of equations (1) will read as follows: 

r 

t dK  - 7d ( K -  1/3)  + 2eeq t ( K -  4 / 5 )  
--d-( = ~ 1~ 

t dR 4 = e ~ d ( 1  - R / R |  2eeq I (I - a 2 R  ) R ,  

 o(1) 
t - ~  = e 2  - 1 0 + 2 e e q  t (1 + 0 ) ,  (4) 

t2A + 2 - lOd'K + + 2e2q 2 , 

dt dE  2E 
dr - e P '  t dT = - e ~ -  2eeq lE ,  

where (see [31 l) a l (d ,  ~) -- 2d(cr| + 3/5) /Roo;  ax(d, or) = (o/(1 + cr))al; p = (4d/SRoo + 5 d ' / 3 R )  > O; d' = 

1 -  d;  A = K + O[ d ( K  - 1 / 3 ) - 2 / 3 ] .  
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Instead of the function q i e T p Q / E  from [3 ], in [4 ] we introduced the function q! - eTpQ/E.  In the initial 

region, as has been noted, the expression t = eTp entering into the definition of q can take small values (e.g., t = 

0.01 at e - I0 -3 and the characteristic value Tp0 - 10). The terms with q are correspondingly small. To avoid 

disrupting the expansion in terms of e by the small order of q, we introduced the variable ql. As will be shown in 

what follows, this completely corresponds to an expansion in terms of the small parameter from [3 ] if we set q = 

0. 
Inasmuch as the functions of system (4) are related to the kinetic energy of turbulence E only via depend- 

ence on the parameter d, it is convenient to write an equation for d, which is equivalent to an equation for R~: 

t ~ - p l  e ~ 2 e e ( 2 - a 2 R  )q l  , 

where Pl is the logarithmic derivative of d with respect to R~, 

(5) 

p l  = "~  
d (d) R~ = (1/(1 + ~u/R~) I/2 - I) (1 + (1 + ~u/R~)I/2) -l = dd' 

d(R ) (1 + d)" 

Let us expand the derivatives in Eqs. (4), (5) in terms of two "independent" variables t and  f" (e.g., 

OK/Or - epOK/Ot + eOK/O~) and present the sought functions in the following form 

K = f (l, ~) + E.~ (t, ~) + O (2), R = R (t, f') + eR (t, f') + O (e2), 

0 = O'(t, f ' )  + tO-(t, f ' )  + 0 (e2), d = "~(t, f ' )  + e~[(t, f ')  + 0 (e2), 

ql = q3 (t, f ' )  + eq" 1 (t, f ' )  + O (e2), (6) 

where all functions except for ql are expanded in terms of e, and ql is expanded in terms of e = eta.  A substantiat ion 

of this form of expansion is presented elsewhere [3 ]. 
In the far region considered earlier in [3 ], the first group of terms of expansions (6) (with hats) presented 

values of functions averaged over internal waves, and the second group of terms (with tildes) presented oscillations 

generated by these waves. 
Upon substituting (6) into Eqs. (4)-(5) and gathering terms with equal powers of e, we obtain for the first 

two terms of (6) the following set of equations written from left to right according to the order of e powers in the 

expansions: 

0R - - 0 ,  
~~ 

0R - - 0 ,  
0F 

d 
~ ~ 0 ,  

0F 

- - 0 ,  
0F 

- - 0 ,  
Of 

tp dK 7 ~ ' ( ~  - 1/3)  t OK 2q"l (K 4 /5 )  

tp dR 4 ~ (1 R / R ~ )  t OR - 2ql (1 - ~t2/~ ) R ;  
dt 5 Of" 

t'~ d ~ =  2 ( 1 -  1) ~ ,  t - - - ~ = 2 q ~ l ( l + ~ ' ) ;  
dt Of" (7) 

a 2 R  " ^ d ( d ]  3 + t ~ =  - 2plql ( 2 -  ) ,  
^ _ - Of" 

tp dt'-- = p~ R ' 

E OE ^ ^ dE 
tp - 2 ~ , t - -  = -- 2qlE ; 

dt R of" 

A 

t2A = 0 ,  ^ ^ o~i , , - ,  Oql = t~t , t'p Oql + t = q l b ,  
Of" Ot Of" 
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A 

where .4 is the second term of the expansion in terms of e for A ( k ,  O, d ) ,  a ( t ,  ~) = A( t ,  ~) + cA( t ,  ~) + . . . .  and ~" = 

JR-t (2  - ~ ' / 3 )  - 10~'K - 21 + ~], the functions with hats depend only on the two first terms in (6). An auxiliary 
equation for the function A which can be obtained from (4) and (5), is as follows: 

d A  
t -~-~- = 2ec t + 2 tec2q  I , 

where 

7 (U 3)  R - I  [d (U l )  2]  ( R - '  l) 0 ( K - l ) ~ 1  (Fu* 4 ) R  -1 c I = - ~ ( 1  + O d )  d '  - + 0  - - - + - -  - ; 

Carrying out a similar expansion in the equation for A, we arrive at 
A A 

o a  _ o ,  = t = ( 8 )  

or- d t  OT- 

Let us analyze system (7), (8). Let us agree to index the rows of system (7) by an additional number (from 
one to six) and the columns of (7) and (8) by an additional letter (from a to c). As in [3 ], the first terms of 

expansions (6) for all functions except ql depend solely on the variable t (7.1a -7.5a), (8a). Let us differentiate 
/ %  

(7.6b) with respect to f ' and  substitute into (8c). We obtain a wave equation for ql:  

0 ql 2/% 
- - + c o  ql = 0  
0~2 

(9) 

where 

w 2 (t) = - 2c 2 (t).  (10) 

Expression (10) for frequency coincides in its form with that from [3 ] with the sole exception that here 
oscillations with frequency w take place in the first term of expansion ql , and not in the second one ~', as in [3 ]. 
The first term q in the expansion for q from [3 ] was determined from the relationship (7.6a) and corresponded to 
a nonzero averaged (over vibrations) turbulent mass flow q. 

In system (7. lb)-(7.5b),  (7.6a) for determination of K, d, O, E, and R, one of the equations is redundant. 
At small t, the equation t2.~ = 0 should be discarded, since in this case it does not follow from (7.6a) that .~ = 0. 

On the contrary, if t 2 >> e, then one of Eqs. (7.1b)-(7.Sb) should be discarded as a condition of a lower order 

compared to (7.6a). It is evident that this is Eq. (7.3b), since the function 0 enters only into two relationships: 
(7.6a) and (7.3b). 

/~,  / %  

In [3 ], with q(t)  known, expression (7.6c) was used to define ~. Here, it is used to find the dependence ql(t), and 
the derivative t O q l / O f ' i n  (7.6c) should be neglected to close the analysis. On doing this, the variables in Eqs. (7.6b) 
and (7.6c) are separated by the substitution ql ( t ,  ~) = q l ( t )q lQ;) ,  and one can write 

2 / %  ~ A t 

2/%" ., dq l  /% ' ^  dq----]-I + w  ql = 0  , t p - - = q t b .  
d f  "2 d t  

(ll) 

The first of relation (11) serves for evaluation of the phase of oscillations from the variable ~ and the 

second serves for evaluation of the amplitude depending on the variable t. 
It should be noted that Eqs. (7.1b)-(7.5b), (11) could be obtained as a degenerate case of the analysis [3 ], 

/ %  

if we set there q = 0. In the near region, in the absence of a smooth component q( t ) ,  the second term in the 
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approximate solution [3 ] ~'(t, ~) plays the role of the first one, and relations (11) hold for this term. Thus, it is 
shown that the approximation of the near region is a particular case of the more general analysis [3 I. In what 
follows, we will compare dependences obtained with results from [3 ]. 

Equations for K, g, and E in system (7. lb)-(7.Sb) can be solved by solving the pair of equations for 3 and 
^ 

R, and in the expression for R we can introduce 3 as a new independent variable. In this case the variables in 
(7.2b) are separated 

d~' 4 (1 + d )  d (3) 

�9 ~ ( 1 - ~ / R |  s (1-3)  +~3 

By integrating the given equation from the initial state (with the index 0) to the current one, we obtain 

n , 0 / R , ,  l ,  , 

from which the expression for R-1 follows: 

__RI = R**I + (1,R0 R**l )[(~13_~/4/131-~014/31_~) 1--  (12) 

Solutions in the form K(~ and E(~  can be obtained for Eqs. (7.1b) and (7.5b). We combine (7.1b) and 
(7.5b) with (7.4b) and integrate: 

1 -21 (s  + 133 / 
~ ~-~o) 

168 /13  
(13) 

have 

-- ~0 / ~ _ ~0) ~ ;  ~) "~) 
It is also easy to express in quadratures the dependences of other functions in (7) on 3. Thus, for 0(d) we 

~,=0oexp ~(;I~ 2(1~( 3+13+ 3)(1_isd)-R)d(3)/(1 - 3 ) )  ' (15) 

where 1-R is calculated as a function of 3 according to (12). It is more convenient to take the integral in (15) 
numerically, as in the expression for 3(0 emerging upon performing integration in (7.4b): 

t 
(1 + 3)p^Rd(3) = f ~ (16) 

6o~ + ~  ( t - 3 )  to 

By defining functions d(t), R(d(t)), K(d(t)), and O(d(t)), equation for the amplitude (1 lb) can also be solved 
in quadratures. However, it is more simple to find the amplitude from the numerical solution of system (7.1b)- 
(7.4b), (1 lb). 

Exp~ssions(12)-(14) make it possible to carry out an analysis. Thus, in the near region the change of 
A 

variables K, E, and R is governed by the change of the sole parameter ~ i.e., the turbulent Reynolds number. The 
molecular Prandtl number does nat affect the dependences K(d) and E(d). This also pertains to the dependence 
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of the ratio (2 -1 - R~I)/(Ro I - R~ 1) one,  which is universal in the near region. Since the ratio ~/do grows, 
relation (13) describes the convergence of K on the ~otropic value of 1/3. The value in the square bracket in (12) 

is positive. Therefore, an  increase or decrease in R depends on the sign o f t h e  difference Ro I - R~ 1. If this 

difference is negative, R drops; when the difference is positive, the quantity R increases. The rate of change in 

R decreases with time. This is determined by the presence of the first, decreasing, factor in the quare bracket in 
(12). 

A more complete analysis can be carried out with the use of the assumption on the small value of the 
parameter 2, ~<< 1, in the near region. In this case Eqs. (7.1b)-(7.5b), (1 lb) can be simplified: 

_5 ~ ( K -  1/3) 5 dR 4 
dt = - 7 ( K -  1 /3 ) ,  -~ t dt - 5 "~ (1 - , ~ / R |  t 

S d~ ^ S d (~)  1 ^  
~ t ~ - ~ = E ( l - R ) 0 ,  -~t dt = ~ d ,  

t - ~ ' - -  -- 2E,  " ~ t ~ - -  10ql - . 

(17) 

By introducing the notation y -, t/to, we write solutions of the first, second, fourth, and fifth equations in 
(17): 

I / 5 ,  -21/5 ~/d 0 = y (K - 1/3)/(K 0 - 1/3) -- (~/do) -21 -- y , 

A 

E / ~ r  ~ = ( ~ / e o ) - 6  = y - 6 / 5  , (18) 

(1 I .) / ( 1  0 ;~)  =exp ( 125 (d_do)) =exp (_ 1.1__~_2do(yl/5 1)) " 

We solve the equation for ~' from~17) approximately. At a small do, the argument of the exponential in 

(..18) is small, and therefore the function R(y) changes slowly, which gives grounds to consider the "frozen" value 
s% 

R in the equation for O. This assumption leads to the power solution 

Ooy~l-~). (19) 

For R > 1, expression (19) determines the power decrease in 0 ̂, and, on the contrary, a power growth for 

< 1. In accordance with the above-presented, expression (19) holds only within a very narrow initial region 

t 2 << 1. At larger values of t, it should be replaced by an algebraic relation that following from the condition A -- 
0, namely: 

~" = - ~ (20) 
(;:  - 1 / 3 )  - 2 / 3 "  

Let us consider qualitatively equation (1 lb) for qi �9 Taking into account the fast convergence of K on 1/3 
(18) and considering the "frozen" value of R, we simplify (1 lb) to obtain 

A ,  

td q~ = 2 (1 - ~ ). 
ql dt 

(21) 

According to (21), the amplitude of oscillations of the mass flow follows a law close to a power function; it 
decreases at R > 1 and increases for R < 1. 
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Fig. 1. Comparison of dependences for functions d and ~: 1) calculation for 
d by system (1); 2) ~ b y  formulas from [3]; 3) ~ b y  (16); 4) ~ b y  (18). 

Fig. 2. Comparison of,dependences for functions R and R: 1) calculation for 
R by system (1); 2) R by formulas from [3]; 3) R by (12); 4) R by (18). 

Let us now consider system (7.1c)-(7.5c), (1 la), which describes the dependence of the functions on E 

The solution of Eq. (9) is as follows: 

A A ~  

ql = ql (tl) sin (w~+ ~o).  
(22) 

For other functions of system (7. lc)-(7.5c) the dependences follow laws similar to those obtained in [3 ] for the far 

region: 

K '  = - 2 ql - 4 / 5 )  _ ,  (23) 
to) , K = c o s ( w f ' + ~ 0 ) ;  

~ l  A ~'~ 

R '  2 ql (1 - a2R ) R - .  (24) 
= R = c o s  ( o ) f ' +  ~ '0 )"  

~"  = - 2 ql' (1 + 0") ~'" = cos (o)V + ~Oo); (25) 
to) 

A r A A 

d-' = 2p 1" ql (2 to)- a2R) , d-" = cos (o)~+ ~Oo) ," 
(26) 

A r  

E '  2 ql ~ - "  (27) = E = cos (o)f'+ T0)" to9 ' 

At small 2, the expression for the frequency of internal waves o)2 = -2c2 can be simplified in the following 

manner: 

2 [ 2 1 o) =-2 
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Fig. 3. Comparison o f  dependences for functions E and . 1) calculation for 
E by system (1); 2) E by formulas from [31; 3) E by (14); 4) E by (18). 

Fig. 4. Comparison of,dependences for functions K and ~:: 1) calculation for 
K by system (1); 2) K by formulas from [3]; 3) K by (13); 4) K by (18). 

and, by substituting then K from (18) and 0"from (19), one can write 

r = 2  - 2  (K 0 -  1 / 3 )  y - 0 0 y  . 

In order to verify the obtained analytical and semianalytical dependences we compared the results with 
a numerical solution of original system of differential equations (1). Initial data for the numerical computation 
corresponded to the following set of initial values from [2 ] coinciding with the set of experimental points from 
[61 for water with a = 800 and Fr = 3.67-10-2:R220 = 3.47-10 -4, E0 = 1.33-10 -3, TpO == 38.4, Tu0 = 43.3, Q0 
== 3.31.10 -3, and O 0 == 0.153. 

Figure 1 presents a comparison of analytical expressions for the function d(~) in the near region (16) and 
A 

(18) with the numerical solution. In the numerical solution, the function d(r) grows somewhat slower than in the 
analytical solution (18), which sets up the "one-fifth" law. More general expression (16) corresponds better to the 

numerical solution. Here and in what follows, initial conditions for the functions with hats differ from those 
presented in the preceding paragraph. They were determined as described elsewhere [3 ]. 

A similar comparison of the complete numerical solution for R ( ~ ,  a smoothed solution in the far region 

(Eqs. (9), (15) from [3]), and two analytical expressions in the near region of the general form of (12) for 
d << 1 (18) is presented in Fig. 2. It is evident that the generally good agreement between the numerical solution 
and analytical expressions worsen with time. 

In Fig. 3, we compared the kinetic energy of turbulence obtained from expression (14), the solution of 
complete system (1), and the solution of the "smoothed" system from [3 ] in the far region with analytical expression 
(18). Here, as in the preceding figures, the exact solution (14) is close to the complete numerical solution, whereas 
analytical power solution (18), which is characteristic for turbulence propagation in an isotropic medium, provides 
underestimated values of the kinetic energy. 

The analytical expressions for the function K at a small parameter d (18) and in the general case (13) 

correspondless  to the numerical solution of the complete sys tem,s ince  their feature is the presence of the 
asymptotic K-- 1/3 (Fig. 3). The pronounced intermediate asymptotic K = 1/3 is observed in the numerical solution 

A 

of the complete system only at very small r The slope of the flat portion in the dependence K(~) becomes steeper 
with e, and the asymptotic is lost. The solution of the "smoothed" solution corresponds well to the oscillation- 
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Fig. 5. Comparison of various dependences for the function t~: 1) calculation 
for 0 by system (1); 2) ~'by formulas from [3]; 3) 0"by (15); 4) ~ b y  (20). 

Fig. 6. Comparison of various dependences for the function ql in the initial 
region. 

averaged complete numerical solution. Recall that the smoothing in [3 ] is carried out by replacing the differential 
equation for q in (1) by the approximate algebraic equation 

q = - c 1/c2 ' (29) 

which is obtained by differentiating condition (7.6a) t2A == 0 with respect to t. 

The time interval on which a correspondence is observed for ~' between the solution of complete system (1) 

and two approximate solutions - the power solution in the form (19) and the quadrature solution (15) - appears 

to be extremely narrow (Fig. 5). The condition t >> e took place in the given initial data, and, in accordance with 
the above-discussed, an approximation for 0 more exact than (15) and (11) can be found from relation (20), which 

is similar to expression (9) from [3 ]. Figure 5 presents the dependence obtained in this manner where ~ and K 

are calculated by equations of system (7). 

In system (7. lb)-(7.5b) and (11) for determination of first terms of expansions (6), the mass flow q'l being 

formed is a kind of passive admixture, i.e., it is unambiguously determined upon calculating all other functions. 

Physically, the near region corresponds to the initial evolution stage of stratified turbulence, when stratification 

affects only formations of the largest scale. According to the approximate solutions obtained, the effect of 

stratification in the near region manifests itself as oscillations superimposed on the smooth variation of functions 

K, R, t~, E, and ~, which is not influenced by this effect and depends solely on reduction of the turbulent Reynolds 
number. 

The use of this approximation is justified by the fact that this makes it possible to obtain analytical 

solutions. On the other hand, it leads (see Figs. 1-5) to less accurate dependences than more general ones from 

[3 ]. According to the expressions for turbulent mass flow (11), the flow ql is presented in the form of a harmonic 

function with a varying amplitude without an additive component, which contradicts the numerical calculation (see 

Fig. 6). This takes place due to the fact that a zeroth-order equation in expansion (6) for ql (7.6a) was used to 
determine the function 0, and Eq. (7.4b) was discarded as contradictory. Thus, one equation and one additional 
function, namely, the additive component of the transverse mass flow, disappeared from system (7). 

To overcome this shortcoming, one can, having determined approximate solutions for all other functions, 
pass to the variable q = Fr-ql in the fourth equation (4) and, by carrying out expansion according to the same 

scheme (6), obtain a more exact representation for ql, where the additive component 

A A A ~  

ql  = -- c l / e c 2  + ql  s i n  (wf'+ To) �9 (30) 

is already present. 
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Fig. 7. Comparison of power dependences (12)-(14) with asymptotic formulas 
(18) for corresponding functions in the case d << 1. 

In Fig. 6, Eq. (30) is compared with the numerical solution of (1) (solid curves 1 and 4, respectively). The 

same figure presents also an algebraic dependence for the averaged mass flow ql " - c l / e c 2 ,  where coefficients 

~1 and c2 are calculated by exact dependences from [3 ] (curve 6) and by approximate ones (12), (13), (16), and 

(20) (curve 3). As a whole, the approximate solution coincides satisfactorily with the numerical one, and the 
maximum discrepancy is observed for amplitudes (amplitude envelopes are presented by curves 2 for 1 and 5 for 
4). 

Summing up the comparative analysis presented, we notice that the approximation of the near region 
describes satisfactorily the true dependences for functions R, d, E, and K within the entire initial region, including 

an area outside the boundary of the region. At the same time, the use of an approximation of a large turbulent 

Reynolds number (d ffi 0) leads to a large error. It results mainly from noncoincidence of the actual dependence 

for the pa ramete r  d ( t ) w i t h  the asymptot ic  law of "one fifth" (18), since the dependences  of ratios 

(K - 1 /3) / (KO - 1/3), E / E o ,  and ( 1 / R  - 1 / R |  - l / R = )  (Fig. 7, from top to bottom) on d constructed 
by formulas (12)-(14) and (18) differ insignificantly within the considered interval of variation of the parameter 

(Fig. 7). 

For the functions q'l(~) and 0~r'), algebraic relations in the far region, i.e., (20) and (29), work for the 

presented set of initial data immediately from the initial conditions. In fact, the initial conditions set up the 

amplitude and phase of oscillations of these functions, and their mean values are determined from algebraic 
expressions in which initial conditions are not present. 

Inasmuch as modeling of the interaction of turbulence internal waves and true turbulence is crucially 

important for description of stratified flows, information on which terms and the extent to which they are 

responsible for the generation of waves, their amplitude, frequency, and decay laws of individual characteristics 

can be useful when modeling stratified turbulence and for comparing individual terms of various models. The fact 

that this work considers only one turbulence model [ 1, 2 ] does not actually minimize the generality of the analysis. 
A review of modern second-order moment models suitable for description of stratified turbulence [8 ] shows that 

in the best models, the structure of the equations is very close to the structure of system (1), and a series of algebraic 

relations is proposed for description of turbulent transverse mass flow. At small inverse Frude numbers, the analysis 

carried out in [3, 4 ] and in the present work can be repeated almost verbatim. The mathematical investigation by 

means of the method of the small parameter carried out here and in [3 ] demonstrates the role of algebraic relations 

(in the given case, q and 0) in introducing averaging over oscillations. 

N O T A T I O N  

r*, dimensional time; U, flow rate; M, size of the lattice cell; r = r*U/M,  dimensionless time; E* = 
(ul 2 + u22 + u~), doubled kinetic energy of turbulence; E = E * / U  2, dimensionless kinetic energy; R22 = u ~ / U  2, 
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vertical component of the tensor of velocity pulsations; ep, dissipation rate of density pulsations; e u, dissipation rate 
of velocity pulsations; Tu = (E*tO/(euM),  time scale of velocity field; Tp = ~'2LO/(epM), time scale of density 
field; R ffi Tu/Tp;  Q ffi (-u--~-)/(UMd~5/dx2), dimensionless turbulent transverse mass flow; O ffi-p2/(MdiS/dx2) 2, 
squared velocity pulsations; o, molecular Prandtl number; e - Fr 2, small parameter; Fr ffi N B v M / U ,  Froude number; 
Nay = ((g/~)(d~5/dx2)) 1/2, Brunt-V~iis~il~i number; R,~ = (SET u Re) L'z, turbulent Reynolds number; Re ffi U M / v ,  
Reynolds number; f" - el/2r; t ffi eTp; e -  de .  
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